Rings of Low Rank with a Standard Involution and Quaternion Rings
نویسنده
چکیده
We consider the problem of classifying (possibly noncommutative) R-algebras of low rank over an arbitrary base ring R. We first classify algebras by their degree, and we relate the class of algebras of degree 2 to algebras with a standard involution. We then investigate a class of exceptional rings of degree 2 which occur in every rank n ≥ 1 and show that they essentially characterize all algebras of degree 2 and rank 3. Finally, we subdivide the class of algebras of rank 4 and degree 2 between exceptional rings and quaternion rings, those algebras defined by an even Clifford algebra construction.
منابع مشابه
Characterizing Quaternion Rings over an Arbitrary Base
We consider the class of algebras of rank 4 equipped with a standard involution over an arbitrary base ring. In particular, we characterize quaternion rings, those algebras defined by the construction of the even Clifford algebra. A quaternion algebra is a central simple algebra of dimension 4 over a field F . Generalizations of the notion of quaternion algebra to other commutative base rings R...
متن کاملCharacterizing Quaternion Rings
We consider the problem of classifying noncommutative R-algebras of low rank over an arbitrary base ring R. We unify and generalize the many definitions of quaternion ring, and give several necessary and sufficient conditions which characterize them. Let R be a commutative, connected Noetherian ring (with 1). Let B be an algebra over R, an associative ring with 1 equipped with an embedding R →֒ ...
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملRings of Low Rank with a Standard Involution
We consider the problem of classifying (possibly noncommutative) R-algebras of low rank over an arbitrary base ring R. We first classify algebras by their degree, and we relate the class of algebras of degree 2 to algebras with a standard involution. We then investigate a class of exceptional rings of degree 2 which occur in every rank n ≥ 1 and show that they essentially characterize all algeb...
متن کاملSome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کامل